
Data Structure

Stacks

Queues

Presented By:

Isha Malik Arora

Computer Science Dept.

Govt. College For Girls, Ludhiana

Definition

• Data: Collection of raw facts & figure.

• Data Structure is representation of the logical

relationship existing between individual

elements of data.

• Data Structure is a specialized format for

organizing and storing data in memory that

considers not only the elements stored but also

their relationship to each other.

What do you mean by Stacks?

Stacks is a linear type of data structure that follows the

LIFO (Last-In-First-Out) principle and allows

insertion and deletion operations from one end of the

stack data structure, that is top. Implementation of the

stack can be done by contiguous memory which is an

array, and non-contiguous memory which is a linked list.

Stack plays a vital role in many applications.

Example of Stacks

Stack Representation in Data Structures

Operations On Stacks

• push() to insert an element into the stack

• pop() to remove an element from the stack

• peek() Returns the top element of the stack.

• isEmpty() returns true if the stack is empty else false.

• size() returns the size of the stack.

PUSH Operation

• What changes are made to the stack when a new element is

pushed?

• A new element is inserted on top

• The value of top increases by 1

POP Operation

• What changes are made to the stack internally for a pop

operation?

• The top element is removed

• The value of top is decreased by 1

Applications of Stacks

• Reverse a String

A Stack can be used to reverse a string’s characters. This can be done by

simply popping each character off of the stack one at a time after pushing

them onto the stack one at a time. The initial character of the Stack is at the

bottom of the Stack, the last character of the String is at the top, and due to

the Stack’s last in first out property, after performing the pop operation in

the Stack, the Stack returns the String in reverse order.

Converting decimal no.to binary
A number can be transformed from decimal to binary, octal, or hexadecimal

using a stack. Any decimal number can be converted to a binary number by

continually dividing it by two and pushing the residue of each division onto

the stack until the result is 0. The binary counterpart ofthe provided decimal

number is then obtained by popping the entire stack.

Example: Converting 14 number Decimal to Binary:

Processing Function Calls:

In programs that call multiple functions in quick succession, the

stack is crucial. Assume we have a program with three A, B, and

C functions. Function A calls Function B, and Function B calls

Function C.

Evaluating Postfix expression:

Stack is the ideal data structure to evaluate the postfix expression because the

top element is always the most recent operand. The next element on the Stack

is the second most recent operand to be operated on.

Postfix expression is 2 4 3 + * 5.

The following step illustrates how this postfix expression is evaluated.

What is Queue Data Structure?

A Queue is defined as a linear data structure that is open at both ends and the

operations are performed in First In First Out (FIFO) order.

FIFO Principle of Queue:

A Queue is like a line waiting to purchase tickets, where the first person in

line is the first person served. (i.e. First come first serve).

• Position of the entry in a queue ready to be served, that is, the first entry

that will be removed from the queue, is called the front of the

queue(sometimes, head of the queue), similarly, the position of the last

entry in the queue, that is, the one most recently added, is called

the rear (or the tail) of the queue. See the below figure.

Enqueue Operation

Algorithm : Enqueue (Q,FRONT,REAR,MAXSIZE,ITEM)

1. [check for queue overflow]

If REAR=MAXSIZE then

Write “Overflow”

return

2. REAR <- REAR+1 [Increment REAR]

3. Q [REAR] <- ITEM [Insert ITEM]

4. Return

Dequeue Operation
Algorithm : Dequeue (Q,FRONT,REAR,MAXSIZE)
1. [check for underflow state of queue]

If REAR = 0 then

Write “Underflow”

return

2. ITEM <- Q[FRONT] [Copy element at FRONT to ITEM]

3. If FRONT < REAR then

FRONT <- FRONT + 1 [Increment FRONT by 1]

Else if FRONT = REAR [Queue contains only 1 element}

FRONT <- 1, REAR <- 0 [Queue becomes empty]

4. Return (ITEM)

Types of Queue

There are four different types of queue that are
listed as follows –

Simple Queue or Linear Queue

In Linear Queue, an insertion takes place from one end while the

deletion occurs from another end. The end at which the insertion

takes place is known as the rear end, and the end at which the

deletion takes place is known as front end. It strictly follows the

FIFO rule.

Circular Queue

In Circular Queue, all the nodes are represented as circular. It is

similar to the linear Queue except that the last element of the

queue is connected to the first element. It is also known as Ring

Buffer, as all the ends are connected to another end. The

representation of circular queue is shown in the below image -

Linear V/s Circular queue

Priority Queue
It is a special type of queue in which the elements are arranged based on the

priority. It is a special type of queue data structure in which every element has

a priority associated with it. Suppose some elements occur with the same

priority, they will be arranged according to the FIFO principle. There are two

types of priority queue that are discussed as follows –

• Ascending priority queue - In ascending priority queue, elements can be

inserted in arbitrary order, but only smallest can be deleted first.

• Descending priority queue - In descending priority queue, elements can

be inserted in arbitrary order, but only the largest element can be deleted

first.

Deque (or Double Ended Queue)

In Deque or Double Ended Queue, insertion and deletion can be

done from both ends of the queue either from the front or rear. It

means that we can insert and delete elements from both front and

rear ends of the queue.

There are two types of deque that are discussed as follows –
Input restricted deque - As the name implies, in input restricted queue,

insertion operation can be performed at only one end, while deletion can be

performed from both ends.

Output restricted deque - As the name implies, in output restricted queue,

deletion operation can be performed at only one end, while insertion can be

performed from both ends.

