
2D transformations and
homogeneous coordinates

POONAM DHAND

RIDHIMA DUTTA

Map of the lecture

• Transformations in 2D:
– vector/matrix notation

– example: translation, scaling, rotation

• Homogeneous coordinates:
– consistent notation

– several other good points (later)

• Composition of transformations

• Transformations for the window system

Transformations in 2D

• In the application model:

– a 2D description of an object (vertices)

– a transformation to apply

• Each vertex is modified:

• x’ = f(x,y)

• y’ = g(x,y)

• Express the modification

Translations

• Each vertex is modified:

• x’ = x+tx

• y’ = y+ty

Before After

Translations: vector notation

• Use vector for the notation:

– makes things simpler

• A point is a vector:

• A translation is merely a vector sum:
P’ = P + T

x

y

Scaling in 2D

• Coordinates multiplied by the scaling
factor:

• x’ = sx x

• y’ = sy y

Before After

Scaling in 2D, matrix notation

• Scaling is a matrix multiplication:

P’ = SP

 x

 y

sx 0

0 sy

x

y

Rotating in 2D

• New coordinates depend on both x and y

• x’ = cosqx - sinq y

• y’ = sinqx + cosq y

Before After

q

Rotating in 2D, matrix notation

• A rotation is a matrix multiplication:

P’=RP

x

y

cosq sinq

sinq cosq

x

y

2D transformations, summary

• Vector-matrix notation simplifies writing:

– translation is a vector sum

– rotation and scaling are matrix-vector
multiplication

• I would like a consistent notation:

– that expresses all three identically

– that expresses combination of these also
identically

• How to do this?

Homogeneous coordinates

• Introduced in mathematics:

– for projections and drawings

– used in artillery, architecture

– used to be classified material (in the 1850s)

• Add a third coordinate, w

• A 2D point is a 3 coordinates vector:
x

y

w

Homogeneous coordinates (2)

• Two points are equal if and only if:
x’/w’ = x/w and y’/w’= y/w

• w=0: points at infinity

– useful for projections and curve drawing

• Homogenize = divide by w.

• Homogenized points: x

y

1

Translations with homogeneous

 x

 y

 w

1 0 tx

0 1 ty

0 0 1

x

y

w

 x

 y

 w

x wtx

ywty

w

x

w

y

w

x
w tx

y

w ty

Scaling with homogeneous

 x

 y

 w

sx 0 0

0 sy 0

0 0 1

x

y

w

 x

 y

 w

sxx

syy

w

x

w

y

w

sx
x
w

sy

y

w

Rotation with homogeneous

 x

 y

 w

cosq s inq 0

sinq cosq 0

0 0 1

x

y

w

 x

 y

 w

cosqx s inqy

s inqx cosqy

w

x

w

y

w

cosq x
w sinq y

w

sinq x
w cosq y

w

Composition of transformations

• To compose transformations, multiply
the matrices:

– composition of a rotation and a translation:
M = RT

• all transformations can be expressed as
matrices

– even transformations that are not
translations, rotations and scaling

Rotation around a point Q

• Rotation about a point Q:

– translate Q to origin (TQ),

– rotate about origin (RQ)

– translate back to Q (- TQ).

P’=(-TQ)RQTQ P

Beware!

• Matrix multiplication is not commutative

• The order of the transformations is vital

– Rotation followed by translation is very different
from translation followed by rotation

– careful with the order of the matrices!

• Small commutativity:

– rotation commute with rotation, translation with
translation…

From World to Window

• Inside the application:

– application model

– coordinates related to the model

– possibly floating point

• On the screen:

– pixel coordinates

– integer

– restricted viewport: umin/umax, vmin/vmax

From Model to Viewport

xmin xmax

ymin

ymax

From Model to Viewport

• Model is (xmin,ymin)-(xmax,ymax)

• Viewport is (umin,vmin)-(umax,vmax)

• Translate by (-xmin,-ymin)

• Scale by

• Translate by (umin,vmin)

M = T’ST

umax-umin

xmax-xmin

vmax-vmin

ymax-ymin
,()

From Model to Viewport

u

v

 w

M

x

y

w

Model CoordinatesPixel Coordinates

Mouse position: inverse problem

• Mouse click: coordinates in pixels

• We want the equivalent in World Coord

– because the user has selected an object

– to draw something

– for interaction

• How can we convert from window
coordinates to model coordinates?

• Simply inverse the matrix:

Mouse click: inverse problem

M
1
 (T ST)

1

x

y

w

 M
1

u

v

 w

Pixels coordinates
Model Coordinates

2D transformations: conclusion

• Simple, consistent matrix notation
– using homogeneous coordinates

– all transformations expressed as matrices

• Used by the window system:
– for conversion from model to window

– for conversion from window to model

• Used by the application:
– for modeling transformations

