
UNIT – 4

Searching Techniques
Poonam Dhand(Assistant Prof., Computer Dept., GCG Ludhiana)

Paramjit Kaur(Assistant Prof., Computer Dept., GCG Ludhiana)

4.1 SEARCHING – AN INTRODUCTION

Searching is the process of locating given value position in a list of values, i.e. search

is a process of finding a value in a list of values. Search is said to be successful if the

element being searched is found or unsuccessful when the element being searched is

not found. A search typically answers in either True or False as to whether the item is

present. On occasion it may be modified to return where the item is found. Two

techniques are used for searching:

1) Linear/ Sequential Search.

2) Binary Search.

4.2 LINEAR SEARCH

A linear search is the basic and simple search algorithm. In Linear search, a

sequential search is made over all elements one by one. In other words linear search

searches an element or value from an array till the desired element is not found in

sequential order. Every element is checked and if it is found then that particular item

is returned, otherwise the search continues till the end of the data collection.

Searching begins from first element and continues until the desired element is found

or end of the file is reached. Linear Search is applied on the unsorted or unordered list

when there are fewer elements in a list.

Basic Idea : working of Linear Search

 Read the search element which is to be searched

 Initially Compare, the search element with the first element in the list. If both

are matching, then display "element found" and terminate the function

 If both are not matching, then compare search element with the next element

in the list.

 Repeat steps until the search element is compared with the last element in

the list.

 If the last element in the list is also doesn't match, then display "Element not

found" and terminate the function.

Example

Suppose we are given a array of 10 elements. We are to search element 72. i.e. X
= 85.

23 55 11 34 39 85 57 34 56 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Step 1: It compares the x with first element located at index 0.Element is not matched

then it moves to the next element.

23 55 11 34 39 85 57 34 56 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Step 2: It compares the x with next element located at index 1. Element is not

matched then it moves to the next element.

23 55 11 34 39 85 57 34 56 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Step 3: It compares the x with next element located at index 2. Element is not

matched then it moves to the next element.

23 55 11 34 39 85 57 34 56 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Step 4: It compares the x with next element located at index 3. Element is not

matched then it moves to the next element.

23 55 11 34 39 85 57 34 56 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Step 5: It compares the x with next element located at index 4. Element is not

matched then it moves to the next element.

23 55 11 34 39 85 57 34 56 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Step 6: It compares the x with next element located at index 5. The desired element 85

is found at 5 location. Here the process is stopped and terminate the function.

23 55 11 34 39 85 57 34 56 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Note: If the last element in the list is also doesn't match, then display "Element not

found" and terminate the function.

 Algorithm

Linear Search (A, x)

// Given an array A[i :x] and x represent number of elements

Set found to false
Set position to -1
Set index to 0
While found is false and index < x
 If A[index] is equal to search value
 found = true
 position = index
 End if
 Add 1 to index
End while
Return position

Pseudocode

procedure linear_search (list, value,x)

 int index = 0;
 //Position of search value
 int position = -1;
 //Indicate whether the value is found
 bool found = false;

 while (index < x && !found)
 {
 if (list[index] == value)
 {

 //The value is found

 found = true;
 position = index;
 }

 index++;
 }

 return position;
}

end procedure

Program:

/*searching an element using linear search technique*/
#include<stdio.h>
#include<conio.h>

void main(){
 int list[20],size,i,sElement;

 printf("Enter size of the list: ");
 scanf("%d",&size);

 printf("Enter any %d integer values: ",size);
 for(i = 0; i < size; i++)
 scanf("%d",&list[i]);

 printf("Enter the element to be Search: ");
 scanf("%d",&sElement);

 // Linear Search Logic
 for(i = 0; i < size; i++)
 {
 if(sElement == list[i])
 {
 printf("Element is found at %d index", i);
 break;
 }
 }
 if(i == size)
 printf("Given element is not found in the list!!!");
 getch();
}

Output:

Enter the size of the list: 6
16 2 37 40 55 29
Enter value to be search:40
Element found at index 4

Complexity analysis:
The time complexity of linear search algorithm in best case is O(1) and in average

and worst case is O(n).

Advantages:

 The linear search is simple - It is very easy to understand and implement.
 From an operational standpoint, linear search also is very resource efficient - it

does not require copying/partitioning of the array being search, and thus is
memory-efficient. It also operates equally well on both unsorted and sorted
data.

 It does not require the data in the array to be stored in any particular order.

Disadvantages:

 The primary disadvantage of linear search is that it has a very poor O(n)
general efficiency. That is, the performance of the algorithm scales
linearly with the size of the input.

 It is slow and time consuming

4.3 BINARY SEARCH

 Binary search is the most popular Search algorithm based on Divide and
conquer technique. It works on a sorted array list either in ascending or
descending order. In this method firstly find the middle element and to search an
element compare the value with the elements in the middle position of the array. If the
value is matched, then search is successful otherwise list is divided into two
halves(one from the first element to the middle element i.e. first half or lower half and
second half or upper half from middle to last element . If the value is less than the
middle element, then it must lie in the lower half of the array and if it's greater than
the element then it must lie in the upper half of the array. We repeat this procedure on
the lower (or upper) half of the array. Binary Search is useful when there are large
numbers of elements in an array.

Basic idea: Working of Binary search

Let X be the element to be searched in an array A[0 – (n-1)] .

1. Select the element which have to be searched
2. Find the middle value of an array using formula:

mid= (low + high)/2.
Here low refers to lower bound of an array i.e. 0 and high refers to upper
bound of an array i.e. n-1.

3. If the element to be searched is the middle element then the search
terminates otherwise.

4. If the element to be searched is less than the middle element then the
search is performed in left sub array and high is set to mid-1.

5. Otherwise, if the element to be searched is greater than the middle
element then the search is performed in right sub array and low is set to
mid+1. In this way the problem size is reduced to half after every
comparison.

6. Repeat the same process until we find the search element in the list or

until sublist contains only one element.

7. If that element also doesn't match with the search element, then display

"Element not found in the list!" and terminate the function.

Example:
Suppose we are given a sorted array of 10 elements. We are to search element
72. i.e. X = 72.

11 18 23 34 39 46 57 69 72 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Low=0, high=9 mid=0 + 9/2 =4

11 18 23 34 39 46 57 69 72 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

As X >Mid. So low becomes mid+1 and high remain same.

Low=5, high=9 mid=(5 + 9)/2 i.e. 7.

11 18 23 34 39 46 57 69 72 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

As X >Mid. So low becomes mid+1 and high remain same.
Low=8, high=9 mid=(8 + 9)/2 i.e. 8.

11 18 23 34 39 46 57 69 72 81

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Now X=Mid. The element is found and the search terminated in 3 steps.

Algorithm

BinSearch(a, i, n, x)

// Given an array a[i :n] of elements in nondecreasing order, 1 ≤ i ≤ J, determine
// whether x is present, and if so, return j such that x — a[j]; else return 0.

{

if (n = i) then // If Small(P)
{

if (x = a[i]) then return n;
else return 0;

 }
else

{ // Reduce P into a smaller subproblem.
mid := [(i + n/2)];

if (x = a[mid]) then return mid;
else if (x < a[mid]) then

return BinSearch(a, i, mid - 1, x);
else return BinSearch(a, mid +1, n, x);

}
}

Explanation: Above algorithm has four inputs an array a[], first element i, last

element n and the element to be searched x. It recursively calculate the middle
element and check the presence of x.

Pseudocode

Procedure binary_search
 A ← sorted array
 n ← size of array
 x ← value to be searched

 Set lowerBound = 1
 Set upperBound = n

 while x not found
 if upperBound < lowerBound
 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x
 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x
 EXIT: x found at location midPoint

 end while

end procedure

Program:
/* implementation of the binary search*/
#include<stdio.h>
#include<conio.h>
void main()
{
 int first, last, middle, size, i, sElement, list[100];
 clrscr();

 printf("Enter the size of the list: ");
 scanf("%d",&size);

 printf("Enter %d integer values in Assending order\n", size);

 for (i = 0; i < size; i++)
 scanf("%d",&list[i]);

 printf("Enter value to be search: ");
 scanf("%d", &sElement);

 first = 0;
 last = size - 1;
 middle = (first+last)/2;

 while (first <= last) {
 if (list[middle] < sElement)
 first = middle + 1;
 else if (list[middle] == sElement) {
 printf("Element found at index %d.\n",middle);
 break;
 }
 else
 last = middle - 1;

 middle = (first + last)/2;
 }
 if (first > last)
 printf("Element Not found in the list.");
 getch();

}

Output:

Enter the size of the list: 6
Enter 6 integer values in Assending order:
10 20 30 40 50 60
Enter value to be search:40
Element found at index 4

Complexity analysis:
The time complexity of binary search algorithm in best case is O(1) and in average

and worst case is O(log(n)).

Advantages

 The binary search is much more efficient than the linear search. Every time it
makes a comparison and fails to find the desired item, it eliminates half of the
remaining portion of the array that must be searched.

 Binary search can have random access to the data but linear search only requires
sequential access.

Disadvantage

 Binary search process only on sorted list.

QUESTIONS

 MULTIPLE CHOICE QUESTIONS

1. Which of the following is not the required condition for binary search

algorithm?

a) The list must be sorted

b) There should be the direct access to the middle element in any sub list

c) There must be mechanism to delete and/or insert elements in list.

d) Number values should only be present

2. The Average case occurs in linear search algorithm.

a) when item is somewhere in the middle of the array

b) when item is not the array at all

c) when item is the last element in the array

d) Item is the last element in the array or item is not there at all

3. Binary search algorithm cannot be applied to.

a) Sorted linked list

b) Sorted Binary tree

c) Sorted Linear Array

d) Pointer Array

4. Complexity of linear search algorithm is:

a) O(n)

b) O(log n)

c) O(n2)

d) O(n log n)

5. Finding the location of a given item in a collection of items is called.

a) Discovering

b) Finding

c) Searching

d) Mining

6. What is the worst case time complexity of linear search algorithm?

a) O(1) b) O(n)

c) O(log n) d) O(n2)

Answers (MCQs)

1. (c) 2. (a) 3. (a) 4. (a) 5. (c) 6. (c)

 FILL IN THE BLANKS

1. To compute the maximum ___________ comparisons are necessary and

sufficient.

2. In Linear search, a ___________is made over all elements one by one.

3. The worst case time complexity of linear search algorithm is__________________.

4. Binary search process only on ______________.

5. The time complexity of binary search algorithm in best case is ___________.

Answers (Fill in the blanks)

1. n − 1.

2. Sequential search

3. O(log n)

4. Sorted list

5. O(n)

 TRUE/FALSE

1. Finding the location of a given item in a collection of items is called searching.

2. The binary search is much more efficient than the linear search.

3. Linear search algorithm is used for large array list elements .

4. Complexity of binary search algorithm in worst and average case is O(n).

5. Comparisons are necessary and sufficient for computing both the minimum

and the maximum is 3n-3/2.

Answers (True/False)

1. (T) 2. (T) 3. (F) 4. (F) 5. (T)

 SHORT ANSWER QUESTIONS

Q1. Define Searching?

Ans: Searching is the process of locating given value position in a list of values, i.e.

search is a process of finding a value in a list of values. Search is said to be successful

if the element being searched is found or unsuccessful when the element being

searched is not found. A search typically answers in either True or False as to

whether the item is present. On occasion it may be modified to return where the item

is found. Two techniques are used for searching:

1) Linear/ Sequential Search.

2) Binary Search.

Q2. Explain advantages and disadvantages of binary search.

Ans: Advantages

 The binary search is much more efficient than the linear search. Every time it
makes a comparison and fails to find the desired item, it eliminates half of the

remaining portion of the array that must be searched.

 Binary search can have random access to the data but linear search only requires

sequential access.

Disadvantage

 Binary search process only on sorted list.

Q3. Write the complexity of Linear search and Binary search.

Ans: Complexity analysis:
The time complexity of linear search algorithm in best case is O(1) and in average

and worst case is O(n).

The time complexity of binary search algorithm in best case is O(1) and in average

and worst case is O(log(n)).

 LONG ANSWER QUESTIONS

Q1. Explain Linear search with example.

Ans: Refer Section 4.2.

Q3. Explain Binary search with example.

Ans: Refer Section 4.3.

EXERCISE

Q1. Search the element given array(24,13,56,35,46,27,78,48) using binary

search.

Q2. Define searching. Explain different types of searching.

